eRD18 - Precision Central Silicon Tracking & Vertexing for the EIC

P. Allport, S. Bailey*, L. Gonella, <u>P. Jones</u>, P. Newman, H. Wennlöf **

^{*} Postdoctoral researcher

^{**} PhD student

eRD18: Proposal

To develop a detailed concept for a central silicon vertex detector for a future EIC experiment, exploring the potential advantages of depleted MAPS (DMAPS) technologies

Physics motivation

Open heavy flavour decays – **high position resolution**Precision tracking of high Q² scattered electrons – **low mass**

WP1: Sensor Development

Exploit on-going R&D in Birmingham into DMAPS to investigate potential solutions for the EIC

WP2: Silicon Detector Layout Investigations

Optimise the numbers of layers, layout and spatial resolution to achieve the required tracking and vertex reconstruction performance

Background: State-of-the-art MAPS

STAR Heavy Flavour Tracker (HFT) at RHIC

MIMOSA (AMS $0.35 \mu m$ CMOS process)

ALICE Inner Tracking System (ITS) Upgrade at LHC

ALPIDE (TowerJazz 0.18 μm CMOS process)

Key features of MAPS

- Small pixel size (down to 20 μm x 20 μm)
- Low power (< few hundred mW/cm²)
- Low material budget (~ 0.3% X₀ per layer)
- Moderate radiation hardness (~Mrad, 10¹³ 1MeV n_{eq}/cm²)

₃/cm²)

Background: State-of-the-art MAPS

Starting point is the ALICE ALPIDE sensor (MAPS)

ALPIDE sensor

- 0.18 μm CMOS *standard* TowerJazz (TJ) process
- 28 x 28 μm² pixel pitch
- Small collection electrode = low capacitance
- Partially depleted; charge collection in part by drift

Future is fully depleted MAPS (DMAPS)

Example: TowerJazz modified process

- 0.18 μm CMOS modified TowerJazz (TJ) process
- Introduces additional planar junction
- Fully depleted sensor; charge collection by drift
- Faster, more complete charge collection
- Less charge sharing between pixels

anar junction charge collection by drift charge collection tween pixels

Background: EIC Detector Concepts

Beast detector layout 4<n<4: Tracking & e/m Calorimetry (hermetic coverage) Beast detector layout 4<n<4: Tracking & e/m Calorimetry (hermetic coverage) Beast detector layout Figure 1: Tracking & e/m Calorimetry (hermetic coverage) Beast detector layout Figure 2: Tracking & e/m Calorimetry (hermetic coverage) Beast detector layout Figure 3: Tracking & e/m Calorimetry (hermetic coverage) Beast detector layout Figure 3: Tracking & e/m Calorimetry (hermetic coverage) Beast detector layout Figure 3: Tracking & e/m Calorimetry (hermetic coverage) Beast detector layout Figure 3: Tracking & e/m Calorimetry (hermetic coverage) Beast detector layout Figure 4: Tracking & e/m Calorimetry (hermetic coverage) Figure 5: Tracking & e/m Calorimetry (hermetic coverage) Figure 4: Tracking & e/m Calorimetry (hermetic coverage) Figure 5: Tracking & e/m Calorimetry (hermetic coverage) Figure 4: Tracking & e/m Calorimetry (hermetic coverage) Figure 6: Tracking & e/m Calorimetry (hermetic

Pawel Nadel-Turonski

- Based on **ALICE ITS** inner layer design
- Si vertex and tracker detectors in central and forward regions
- Seek high resolution, high s/n, low mass, low power solution
 - applicable to both eRHIC and JLEIC

- Aim: to demonstrate high spatial resolution in a fully depleted sensor
 - Advantage of depletion = charge collection by drift
 - → larger Q, faster collection, smaller cluster multiplicity
 - → plus improved radiation hardness (not essential for the EIC)
- Technology development
 - Exploiting our involvement in other projects (not EIC specific)

Project	Pixel sizes	Electrode	Process	Availability
CERN-TJ	20 x 20 μm ² to 50 x 50 μm ²	Single small	TJ standard TJ modified	Now
DECAL	50 x 50 μm²	Multiple	TJ standard TJ modified	Now Spring
RD50	≥ 20 x 20 µm²	Single large	LFoundry	2019

- Current focus is the CERN-TJ investigator chip
- Permits a comparison between standard and modified processes

- CERN-TJ investigator chip now available for testing in Birmingham
 - Designed to study charge collection properties and detection efficiency
 - More than 100 pixel matrices (8 x 8 pixels)
 - Range of pixel sizes relevant to both EIC barrel and disks
 - 20 x 20 μm² to 50 x 50 μm² pixels
 - Simple follower-based (analogue-only) readout

CERN-TJ Investigator: first look

Pixel: 20 x 20 μm² Electrode: 3 x 3 μm² Electrode spacing: 3 μm

Pixel: 28 x 28 μm² Electrode: 2 x 2 μm² Electrode spacing: 3 μm

Pixel: 50 x 50 μm² Electrode: 3 x 3 μm² Electrode spacing: 18.5 μm

Available pixel matrices

0-35: 20 x 20 μ m² 36-57: 22 x 22 μ m² 58-67: 25 x 25 μ m² 68-103: 28 x 28 μ m² 104-111: 30 x 30 μ m² 112-123: 40 x 40 μ m²

124-133: $50 \times 50 \ \mu m^2$

Electrode sizes $1-5 \mu m^2$

Electrode spacing
1-5 μm typically
(except 50 x 50 μm² pixels)

- Comparison of TJ standard and modified processes
 - 28 x 28 μm² pixels, tests with ⁵⁵Fe source

- Comparison of TJ standard and modified processes
 - 28 x 28 μm² pixels, tests with ⁵⁵Fe source

- More large amplitude signals with the modified process
 - Due to more complete charge collection

- Comparison of TJ standard and modified processes
 - 28 x 28 μm² pixels, tests with ⁵⁵Fe source

- Modest improvement in signal rise time for the modified process
- Note: published studies* ~ 16 ns (50 x 50 μm² pixels)

* H. Pernegger et al., 2017 JINST 12 P06008

- Update on other developments
 - 1. DECAL prototype in TowerJazz standard process
 - Part of a separate Digital ECal (DECAL) project (UK funded PRD)
 - Consists of larger pixels (50 x 50 μm²) and four small collection electrodes to match requirements of DECAL project
 - Undergoing initial tests; readout being developed
 - 2. DECAL test structures in TowerJazz modified process
 - Multi-Project Wafer submission with CERN in July
 - Consists of passive versions of the DECAL prototype pixels
 - 3. RD50 LFoundry submission expected by end of 2018
 - Matrices with improved time resolution (in-pixel TOA and TDC)
 - Test structures with pixels down to 20 x 20 μm²
 - But, large electrode (electronics sits within the collecting n-well)

All options are useful for evaluation purposes ...

Expect larger Q, but also larger C than single small electrode

when here

- Update on manpower
 - EIC (FY17) R&D funds supported a postdoc for 5.5 months
 - Post filled by Dr. Sam Bailey; left to take up a new job in the summer
 - A new UoB-funded PhD student (Håkan Wennlöf) started in October
 - Håkan performed all the initial tests of the CERN-TJ investigator
 - He has now started to revisit the simulations work started by Sam
- Focus on simulations in EicRoot software framework
 - Studied pions (kaons and protons) from 500 MeV/c to 10 GeV/c
 - Various barrel configurations plus default TPC specification
 - 4-layer barrel, default geometry, 20-40 μm pixels
 - 3, 4 and 5-layer barrels, 30 μm pixels
- Plan for the next 6 months
 - Optimise the number and radial position of the layers
 - Mainly concerned with pointing resolution at low p_T
 - Consider option of having an outermost layer with lower intrinsic resolution (larger pixels) but added timing capability

eRD18: Project summary

- WP1: Sensor development
 - Started characterisation of CERN-TJ investigator
 - Demonstrated improved charge collection with the modified process
 - Currently investigating amplifier behaviour with vendor (CIVIDEC) to understand the dependence of rise time on signal amplitude
 - Plan to continue characterisation studies with a new amplifier
- WP2: Simulations
 - Restarting simulation studies
 - Optimise the number and radial position of the layers
 - Aim for pointing resolution ~ 30 μm at 1 GeV/c (cf. D⁰ cτ ≈ 120 μm)
 - Consider option of a tracking layer with added timing capability
 - Outer layer with larger pixels
 - Optimise pixel size with outer tracker
 - Consult with a chip designer to estimate power requirement

requirement

Backup Slides

Geometry: TPC + VST + beam pipe + magnetic field (B = 1.5 T)

TPC parameters
Inner radius = 20 cm
Outer radius = 80 cm
250 μm position resolution

VST parameters Layer #1 radius = 2.3 cm Layer #2 radius = 4.6 cm Layer #3 radius = 14 cm Layer #5 radius = 16 cm 30 x 30 μ m pixels 0.3% X_0 per layer

Beam pipe parameters
Material = beryllium
Outer radius = 1.8 cm
Thickness = 0.8 mm

Results: pions; eta = 0.5; 3 pixel sizes: 20 μm, 30 μm and 40 μm

Impact parameter resolution (μm) in transverse (r-φ) plane versus momentum

- Modest improvement in impact parameter resolution for all p_T
 - Dominated by resolution of innermost layer

Results: pions; eta = 0.5; pixel size = 30 μm; 3, 4 and 5 layers

Relative momentum resolution (%) versus momentum

Impact parameter resolution (μm) in transverse (r-φ) plane versus momentum

- Little sensitivity to the number of layers
 - Slightly better impact parameter resolution with one inner layer

Charm observables in the EIC White Paper

- Leading order charm production process is γg fusion
- Provides sensitivity to:
 - I. The gluon contribution to spin of the nucleon
 - Charm sensitive to ∆g in e-p scattering
 - II. Physics of high gluon densities and low-x in nuclei
 - Measurement of F₂^{charm} sensitive to nuclear gluon density in e-A
 - III. Hadronisation and energy loss in cold nuclear matter
 - Nuclear modification and quark mass dependence
- A future EIC promises unprecedented precision in charm (and beauty)
 - Reconstruction challenging due to short decay lengths \sim 100 μm
 - Likely to place strongest constraints on the tracker design
 - Potential importance of low-p_T (standalone) tracking

A. Accardi et al., Eur. Phys. J. A (2016) 52:268

Open charm reconstruction

Signature is displaced (secondary) decay vertex

Particle	Decay	Branching	cτ [μm]
D ₀	K ⁻ π ⁺	3.9%	123
D+	Κ-π+π+	9.5%	311
D*+	$D^0\pi^+_{slow}$	67.7%	

$$\mathsf{D}^{*+} \to \mathsf{D}^0 \pi^+_{\mathsf{slow}} \to \left(\mathsf{K}^- \pi^+\right) \pi^+_{\mathsf{slow}}$$

- Requires excellent impact parameter resolution in $r-\phi$ and z
 - Dominated by position and resolution of innermost tracking layer
 - Close as possible to beam pipe (caution: radiation environment)
 - Highest possible spatial resolution (small pixels)